

Regulatory Approval of Risk Assessment Tools

MAY 2, 2019

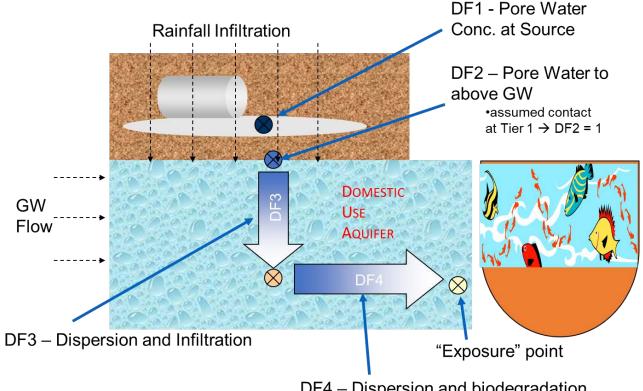
Exposure Pathway

Risk Tools

- Tier 2 guidelines include methods for pathway elimination, guideline re-calculation:
 - Many uses for these tools
 - Use of tools implicitly approved
 - Not always the right tools

Risk Tools

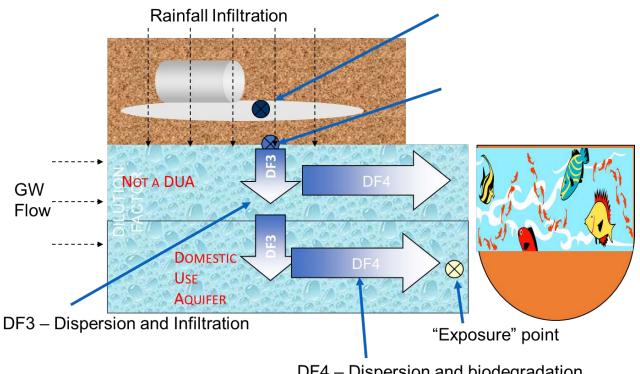
- Could other tools get explicit regulatory approval?
- Project goal: document simple, inexpensive tools and present to regulators


Risk Tools

- 5 Tools evaluated:
 - Two-layer extension of groundwater model
 - Screening transport model for inorganics
 - Additional pathway elimination
 - 1D vertical unsaturated transport model
 - Model parameters for peat

2-Layer Groundwater Model

Tier 1/Tier 2 conceptual model:



DF4 – Dispersion and biodegradation (aquatic life & wildlife watering)

2-Layer Groundwater Model

2-Layer conceptual model

DF4 – Dispersion and biodegradation (could occur in either groundwater unit)

2-Layer Groundwater Model

- Vertical transport in saturated zone ("DF2A")
 - Model parameters adjusted for saturated zone
- Dilution of shallow groundwater in deeper DUA ("DF3A")
- Lateral transport (DF4) through unit with highest groundwater velocity

Inorganics Screening Model

- Tier 1/Tier 2 groundwater model intended for organic chemicals
 - Based on Domenico (1987) model
- When metals or other inorganics exceed Tier 1 guidelines in groundwater, but receptor isn't close, what do we do?

Inorganics Screening Model

- Other jurisdictions have applied Domenico model for inorganics
- Key considerations: complex soil-water partitioning; background concentrations
- Tweak model to include background; conservative default background concentrations, Kd values

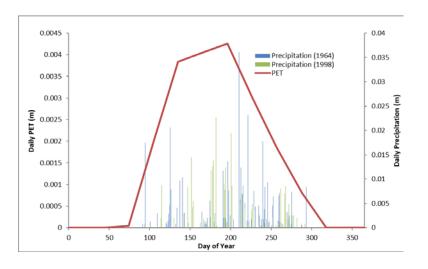
Additional Pathway Exclusions

- Ideas considered:
 - DUA aquifer is inherently unpotable
 - FAL surface water at higher elevation than contamination; water bodies with no groundwater input
 - Wildlife soil & food ingestion: remote sites, deeper than burrowing depth

<u>This Photo</u> by Unknown Author is licensed under <u>CC</u> <u>BY-SA</u>

1D Vertical Transport

- Hydrus 1D



<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

1D Vertical Transport

- Requires long-term precipitation data
 - Environment Canada
- Assess average and dry years

Peat Properties

- AEP currently recommends coarse soil guidelines for organic chemicals in peat
- However, transport through peat may differ substantially from coarse soil
- Research appropriate properties for peat

<u>This Photo</u> by Unknown Author is licensed under CC BY-NC-ND

Peat Properties

Table E1 Properties of Peat				
Property	Fibric material	Mesic material	Humic material	
Bulk density (g/cm³)	<0.075	0.075 – 0.195	>0.195	
Total porosity (fraction)	>0.9	0.85-0.9	<0.85	
Water content (fraction)	<0.48	0.48-0.7	>0.7	
Hydraulic conductivity (m/y)	>530	8.8 – 530	<8.8	

Peat Properties

Table E3 Organic Matter Content of Peata				
Material	Organic Matter (g/kg)	Fibre Content (% by weight)	Estimated Organic Carbon (%) ^b	
Canadian sphagnum	960	54	48 - 56	
Michigan sphagnum	910	33	45.5 – 54	
Dakota reed-sedge	860	12	43 – 50	
Ohio muck peat	400	7	20 - 24	

a – from McCoy (1992)

b – calculated based on OM/OC ratio of 1.7 to 2.0

Project Status

- Initial documentation of risk tools complete
- CAPP determining 1-2 top priorities to bring to regulator in 2019