RESULTS

ASSESSMENT OF SHOWER EXPOSURES BENZENE SOURCED FROM GROUNDWATER IMPLICATIONS FOR GUIDELINE DEVELOPMENT

Presented by:

Anthony L. Knafla M.Sc., DABT (Equilibrium Environmental)

Sean Hays, Ph.D. (Summit Toxicology)

Acknowledgements

- Petroleum Technology Alliance Canada (PTAC)
- Canadian Association of Petroleum Producers (CAPP)
 - Alberta Upstream Petroleum Research Fund
- CAPP Project Champion
 - Mike Morden (Suncor Energy Inc.)

Background

- Benzene Drinking Water Guideline (DWG)
 - based on drinking water exposure (1.5 L/day consumption)
- Health Canada included showering exposures for a proposed update to the benzene DWG
 - Benzene likely causes similar effects in humans regardless of route
 - Showering contributes
 - » 1.7 & 0.88 L/day equivalent exposure via inhalation & dermal
 - Proposed change in DWG from 5 to 1 μg/L
 - » importance of benzene shower exposures supported by Lindstrom et al. (1994) - residence on contaminated well water
- Issues
 - HC approach used a generic screening shower model
 - may not be appropriate to assess inhalation exposures against the drinking water standard
 - Current tox data for the oral limit may not be the best

Scope

- Re-Construct published shower model developed by key researchers in the field
 - Identify sensitive model variables
 - Explore some model refinements
- Shower model calibration
 - Compare with literature values for exposure concentrations
- Assess shower-related exposures associated with the benzene DWG
 - Incorporate Canada-specific exposure parameters
 - Compare with shower-related exposure assessment developed by Health Canada for guideline development
 - Generate data for input into a PB/PK model

Scope

- Determine benzene and metabolite concentrations in blood from inhalation, dermal, and oral exposures associated with the DWG
 - Utilize PB/PK Modelling
 - More closely related to development of toxicity and can more properly summate exposure from multiple routes
 - Evaluate how this could influence the DWG
- Inhalation and oral toxicity limits are available for benzene
 - Rodent data for the oral toxicity limit
 - Human data for the inhalation toxicity limit
 - Ultimately, inhalation, dermal, and oral doses are compared with respective route-specific exposure limits
 - Complicates development of a DWG and just using an oral limit
 - Preliminary evaluation of which limit may be most appropriate for assessing cumulative oral, inhalation, and dermal exposure risks

Model Construction - Health Canada

Model Construction - This Project

Shower, bathroom, & house emissions addressed quantitatively

Sensitive Model Variables

- Sensitive Variables
 - Water use levels
 - Emission rates from different water uses
 - Shower flow rate
 - Presence or absence of a bathroom fan
 - Showering time and time in bathroom
- Solve partial differential equations using du/dt substitutions
 - Shower $\frac{dC_S}{dt} \cdot V_S = \left[Q_S \cdot C_W \cdot TE_S \right] \left[Q_S (C_S(t) C_B(t)) \right]$
 - Bathroom $\frac{dC_{BT}}{dt} \cdot V_{BT} = \left[Q_T \cdot C_W \cdot TE_T \right] \left[Q_{BT} \cdot C_{BT}(t) \right] \left[Q_S \left(C_{BT}(t) C_S(t) \right) \right]$
 - House $\frac{dC_{HT}}{dt} = \frac{Q_{HW} \cdot C_W \cdot TE_H}{V_H} + \frac{Q_{BT} \cdot C_{BT}(t)}{V_H} \frac{Q_H}{V_H} \cdot C_H(t)$

Model Calibration

- Lindstrom et al. (1994)
 - A key supporting study for shower-related benzene exposure
 - residence with benzene contaminated groundwater
 - Mean benzene water concentration 296 μg/L ~ 60x DWG
 - No bathroom fan
 - Residence with a relatively low air exchange rate
 - (0.35 Ach/hr)
 - Shower run for 20 minutes
 - Measured transfer efficiency
 - Benzene in water: shower head floor drain; mean of 0.88

Model Calibration - Lindstrom Data

- Shower <u>only</u> exposure
- Blue Bar
- Measured Shower air concentrations over time interval
- Red Bar
- Measured Bathroom air concentrations over time interval
- Green Bars
- Measured Bedroom & House air concentrations over time interval
- Shower and bathroom
- 2x to 3x over-prediction
- Bedroom in range
- House 10x underprediction

Modeling for Guideline

- Model parameters developed
- Key differences include:
- 10 versus 20 min shower
- More specific building parameters
- Hold and cold water temperature for different uses
- Shower frequency
- Household water use for a family of 4
- Water flow rate

Lieve in			Г			
Parameter Name	Units	Value min	Value MLE	Value Max	Reference	
Shower water flow	L/min	8.7	10	11.4	Jo et al 1990 a,b; in Chowd 2009	
	L/min	4.9	8	12.9	US EPA, 1997	
Shower stall volume	m ³	1.67	2	2.25	Jo et al 1990 a,b; in Chowd 2009	
Bathroom volume	m ³	5	10	50	McKone, 1989 (estimated)	
Building volume	m ³		535.8		AENV, 2008 (12.2 x 12.2 x 3.6)	
Shower air exchange rate	Ach/hr		12			
Bathroom air exchange rate	Ach/hr		3			
Building ventilation rate	Ach/hr		0.5		(AENV, 2008)	
Shower time	min/shwr	5	10	20	McKone, 1987	
	min/shwr		10.4		US EPA, 1997	
Time in bathroom after shower	Min		20		McKone and Knezovich, 1991	
Hot water temperature	С	35	40	45	Chowdhury (in press); in Chowd 2009	
Cold water temperature	С	15	20	25	Chowdhury (in press); in Chowd 2009	
Shower frequency	shwr/day	0.72	0.74	0.76	US EPA (1997)	
Area of exposed skin to shower water	m²	1.69	1.82	1.94	Health Canada, 1997	
Toilet water use (n=family of 4)	L/day		68.4 x 4		US EPA (1997)	
Dishwasher & Laundry (n=family of 4)	L/day		72.2 x 4		US EPA (1997)	
Kitchen sink and cleaning use (n=4)	L/day		19 x 4		US EPA (1997)	

Modeling for Guideline Development

- Water Concentration
 0.005 mg/L (5 µg/L)
- Chronic inhalation limit not exceeded for times in the house after showering and in the bathroom

Preliminary Inhalation Doses

	Amortized	Absorbed		
Exposure	Air Conc.	Dose	Dose Ratio	HC Ratio
	mg/cu.m	mg/kg-d	Inh/Oral	
Shower - Inhalation	1.5E-04	1.6E-05	0.16	
Bathroom - Inhalation	1.1E-05	1.1E-06	0.01	
House - Inhalation	1.5E-04	1.6E-05	0.15	
Sum - Inhalation	3.1E-04	3.2E-05	0.32	1.75

Assumptions – Inhalation

- Amortized concentrations
 - shower = 0 to 10 min; bathroom 10 to 20 min; house rest of day
- 0.74 showers/day
- Inhalation bioavailability 50%; oral bioavailability 90%
 - Based on literature data
- Inhalation to oral dose ratio was 0.32
 - Approximately 5- to 6-fold lower than HC's ratio of 1.75
- Rationale for differences
 - Building parameters, shower duration, refined model, bioavailability

Preliminary Dermal Doses

$$DAD = \left(\frac{Cw \cdot SA \cdot Kp \cdot t \cdot F \cdot (1 - TE)}{BW}\right)$$

DAD = Dermally Absorbed Dose (mg/kg-day)

TE = transfer efficiency for benzene volatilization in the shower

(0.88; Lindstrom et al., 1994) (OR, take average (1, 0.88) = 0.56)

Cw = concentration in shower water (ug/L) (5 ug/L = AENV DWG for benzene)

SA = skin surface area (cm²) $(18,200 \text{ cm}^2; \text{ or } 1.82 \text{ m}^2)$

Kp = permeability coefficient (m/min) (3.5E-5 m/min or 0.21 cm/hr)

t = time of event (min) (10 minutes shower)

F = frequency of showers (events/day) (0.74 showers/day; US EPA, 1997)

BW = body weight

	Absorbed	Dose	
Exposure	Dose	Ratio	HC Ratio
	mg/kg-d	Derm/Oral	Derm/Oral
Shower - Dermal	1.72E-05	0.17	0.88
Drinking Water - Oral	1.02E-04	1.00	

Rationale for Differences: volatilization loss of benzene in water (using average of head/drain concentration), 10 minute actual shower time not 30 minutes used by HC (Krishnan work) to address other potential exposures

PBPK Modeling of Benzene

What We Know About Benzene

- Hematopoetic effects require metabolism to occur
- Hematopoetic effects are not likely dependent upon route of exposure (inhalation, oral, dermal)
- Kinetics (absorption, distribution, metabolism and excretion) of benzene in humans have been well studied
- Numerous physiologically based pharmacokinetic (PBPK) models have been developed for benzene
- Absorbed dose (or some measure of it) has been used extensively by regulatory agencies to conduct routeto-route extrapolation

Objective

- Model the kinetics of multi-media/multiroute exposures to benzene to estimate key dose metrics (benzene in blood or amount metabolized) in humans associated with shower and in-home exposures
- Compare to inhalation guideline for benzene
- Assess the validity of Health Canada drinking water guideline

Benzene PBPK Model

Exposure Scenarios

Model Simulations

Conclusions

- Modeling benzene specific kinetics associated with home water supply exposure) was used to set a more defensible DWG
- PBPK modeling results suggest lowering of water standard is not necessary
 - DWG (0.005 mg/L) is sufficiently protective
- Toxicity data used to develop the drinking water standard may be overly conservative for assessing shower inhalation exposures

Future Directions

- Refine and adjust shower model
- Explore gender differences in benzene metabolism
- Conduct Monte Carlo simulations to address variability in exposure and kinetic parameters
- Evaluate the development of a benzene drinking water standard using PB/PK modeling and extrapolation from human inhalation epidemiological data rather than using animal bioassay results and extrapolating to humans