## DEVELOPING AN ALBERTA FLARE CALPUFF MODEL

Brian Zelt, Ph.D., P.Eng. Zelt PSI

26 September 2011 PTAC -- 10<sup>th</sup> Annual Air Issues Forum



# Why do we need a Flare Model?

- Flares are different than stacks
- Current dispersion models are made for stacks with a constant exit height and constant exit diameter, but for a flare these change with the flow rate and wind
- All regulatory dispersion models can handle steady, continuous emissions from stacks
- Non-routine flares typically have predictions that exceed the AAAQO



### What is Non-Routine Flaring?

- Planned Flaring
  - Maintenance
    - well tests
    - vessel and pipeline blowdowns
  - Occur less than 720 hours/year
- Unplanned Flaring
  - Process upsets
  - Emergencies
  - Occur less than 88 hours/year



3

# Who is Funding?

- Alberta Upstream Petroleum Research Fund (AUPRF)
  - PTAC
    - · Petroleum Technology Alliance Canada
  - CAPP
    - Canadian Association of Petroleum Producers



### Who is doing work?

- Zelt Professional Services Inc. (Brian Zelt)
  - Programming and documentation
- Michael Zelensky (ERCB)
  - Combustion equations
- TRC (Francoise Robe, David Strimaitis, Joe Scire)
  - CALPUFF and related code update
- Z² We have worked together to produce:
  - ERCBflare
  - ERCBincin
  - ERCBH2S
  - Risk based criteria for non-routine flares



5

# Why do we need a Flare Model for CALPUFF?

- Non-routine sour gas flare SO<sub>2</sub> dispersion predictions often exceed Alberta Ambient Air Quality Objectives (AAAQO) using available "stack" models
  - Is the current modelling over simplified?
- CALPUFF can handle transient sources but not flares with parameters that change with the wind
- Risk based criteria for non-routine flaring requires realistic predictions
  - For example 99<sup>th</sup> percentile prediction at a receptor must not exceed the AAAQO
- Air Quality Management Programs require realistic predictions of when and where exceedances occur



# Why ...

- Current models do not realistically model flares
- Difficult to make non-routine flare SO<sub>2</sub> dispersion acceptable without expensive flare system changes
- Flare source parameters sensitivity to meteorological conditions and flaring rate needs to be accounted for
- Risk-based criteria require accurate predictions for all conditions
- Flaring Management Programs more effective if exceedances properly identified





# Stack Exit Parameters Input to CALPUFF

#### **CONSTANT IN TIME**

- 1. Height (m)
- 2. Diameter (m)

#### **VARIABLE IN TIME**

- 3. Temperature (K)
- 4. Velocity (m/s)
- 5. Emission rate (g/s)



9

# Flares use Pseudo-Parameters

- Pseudo supposed, but not real
- Calculated to allow for combustion of flared gas
  - conserve energy (buoyancy) and momentum
  - varying degrees of simplifications used

#### VARIABLE IN TIME

- 1. Effective height of flame
- 2. Pseudo-diameter
- 3. Pseudo-temperature
- 4. Pseudo-velocity
- 5. Emission rate / Efficiency
- 6. Location



# ERCBflare.xls Pseudo-Parameters

- Combustion efficiency calculated from U of A correlations
- 25% of heat released lost through radiation (less than 75% of heat is released to plume rise)
- Buoyancy flux at site pressure and nearly constant with ambient temperature
- Temperature calculated at lower flammability limits with heat losses
- Pseudo-diameter and Pseudo-velocity calculated from Temperature, buoyancy and momentum flux
- Effective height and location uses Brzustowski flare model
  - Stack-tip downwash may occur at high wind speeds



11

#### Brzustowski Flare Model

- Used in AP 5-21
- Determines vertical and horizontal position of flame
- Dependent on flared gas momentum, crosswind momentum and lower flammability limit
- Effective height changes with:
  - wind speed, ambient temperature, flaring rate and gas composition
- ERCBflare currently uses the average wind speed and temperature to determine an effective height used for all meteorological conditions



## How will predictions change?

- Based on β-ERCBflare with variable source parameters into ERCBSCREEN:
  - Predictions for wind speeds <3.5 m/s decrease</li>
  - Predictions for wind speeds >3.5 m/s increase
  - Maximum parallel airflow prediction now occur at high wind speeds
  - Maximum complex terrain prediction often occur at low wind speeds, but depends on terrain



13

## How are we doing it?

- ERCBflare will be enhanced to:
  - Accept non-routine flaring inputs to define exponential blowdown
  - Produce screening source parameters that vary with
    - Meteorological Conditions
    - Transient Flaring Rate
  - Run 54 screening meteorological conditions
  - Determine if screening predictions are acceptable
- If screening not acceptable, then ...



## How are we doing it?

- ERCBflare (basis) will be modified:
  - User interface
  - Method to retrieve MM5/CALMET meteorological file for site at stack-top
  - Method to produce ABFlare.DAT variable source file
- CALPUFF will be modified:
  - To read ABFlare.DAT to predict SO<sub>2</sub> dispersion from flares with source parameters that vary with
    - Meteorological conditions
    - · Transient flaring rate
- Post processor of CALPUFF output risk based criteria





#### When

- Phase One Code Development
  - January 1, 2011 to June 30, 2011
- Phase Two Model Testing
  - July 1, 2011 to September 30, 2011 ...?
- Phase Three Documentation
  - October 1, 2011 to December 31, 2011 ...?



17

### Blowdown Model

- Based upon an exponential pressure relief
- A portion of the volume remains in vessels
- Inputs are:
  - Initial pressure, temperature and gas composition, contained volume, orifice sizes
  - Initial flowrate and total volume released calculated
  - Fraction of volume released
  - Step duration
- Blowdown model creates a series of puffs to be modelled in CALPUFF





### **Combustion Calculations**

- Stand alone module for combustion calculations
- CALPUFF-like input file
- Reads meteorological time series at stack-top
- Allows for:
  - Blowdown inputs, user specified blowdown or user source
  - Meteorologically variable combustion or static meteorology
  - Emission rate of
    - Maximum SO<sub>2</sub> (100% conversion efficiency)
    - Actual SO<sub>2</sub> (conversion efficiency)
    - Uncombusted H<sub>2</sub>S (conversion efficiency)

Zelt (

### **Combustion Calculations**

- Allows for...
  - Blowdown average raw and fuel gas composition
  - Variable H<sub>2</sub>S gas blowdown composition is handled through user-blowdown input
  - Fuel gas ratio either static (Qmax) or proportional to blowdown
- Creates an VariableFlare.dat file(s) for CALPUFF



21

### **Example Application of ABFlare**

- Facility blowdown with multiple vessels in 15 minutes
- Variable H2S depending upon vessel
- Flow limited by flare tip diameter







